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I became chair of the Mathematic Department at Auburn University at a time when I had ceased
to do research. Much as I wanted to get back into research, becoming chair of a large depart-
ment made doing so even more difficult. I will discuss a sequence of fortuitous events along
with my continued fascination with indecomposable continua that allowed me to jump start
my research once again. This led to my research in the areas of non-metric indecomposable
continua, Whitney maps and generalized inverse limits. These concepts will be defined and I
will outline my successful research in these areas.

It sometimes happens that a once productive mathemati-
cian will stop doing research. As a former chair of a math-
ematics department I’m aware of such incidents and under-
stand some of these circumstances. The hum-drum nature
of everyday life can sap our attention and slow down one’s
creativity. Some researchers get tired and loose interest in
doing research; some have worked on hard problems without
any discernible progress and become frustrated with the idea
of doing research; some loose the energy of their youthful
exuberance as retirement seems not so far down the road;
personal issues and family problems can often impact on all
of our work; sometimes the other duties and obligations to
our institution just does not leave us much time to do re-
search and dedicating all our weekends to research may not
be healthy; sometimes one’s interest veers away from mathe-
matical research; sometimes a person just feels that he or she
is just not capable of it anymore.

One’s personal or work environment can in many ways
affect one’s conduct in a job in general, sometimes to the
detriment of our productivity. How does a head or chair in
a mathematics department address this problem when he/she
sees a faculty member becoming less productive? I feel that
the best strategy is to work together with a faculty member
to find ways of encouraging them in their research and in the
meantime to find alternate ways for them to be productive
in the department. A conscientious faculty member will be
very willing to work with an encouraging chair. Because of
a combination of some of the reasons I listed above, in the
1990’s and early 2000’s I did not publish any research. But,
along with the support of my chair at the time, I did two
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things. I took on additional administrative duties and I got
involved with mathematics education grants. Thus I was able
to continue being a productive member of the department –
and Auburn’s mission includes teaching and outreach such as
our grant work. Such was my position in 2002: I was acting
as the Associate Chair of the department at the time – my
main duties included working out the teaching schedules for
the two mathematics departments then at Auburn which in-
cluded making assignments to 50 – 70 odd graduate students;
and I became involved in a multi-million dollar Mathematics
Education Grant, first as a writer and eventually as a senior
personnel member of the grant. So I was certainly “pulling
my weight” for the department. I was still interested in math-
ematics and enjoyed figuring out challenging problems, but
I was not doing “new” research. Then in 2002, for personal
reasons, the chair of the Mathematics Department, resigned.
Because at that time I was “Associate” Chair, the Dean asked
me to serve as acting chair of the department until a perma-
nent chair could be selected by due process. Without going
into the messy details, I eventually became the permanent
chair. Now this placed a considerable amount of additional
responsibility and work on my shoulders and so made the
likelihood of returning to research even less likely.

It takes at least two years to learn the job as chair and I had
the luck to have access to former chairs for advice – still the
work was considerable. And, in addition, I was determined
to continue the teaching that I loved so much; in fact that was
one of the important reasons that I became a faculty member
at Auburn. Then two unrelated events happened; at this time
I do not recall which came first.

One: I received an invitation to submit an article for
a special volume of a journal that was to be dedicated to
David Bellamy a well-known and outstanding mathematician
(many thanks to the editor Wayne Lewis for the invitation);
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back when I was doing research I had done some work in ar-
eas related to his work. Coincidentally I was mulling around
an idea about a property of indecomposable subcontinua in
what might be called the “long plane,” so named because it is
the product of two long lines. So let me define these objects
and tell you my idea and what became of it. . . . This idea led
to the first paper (Smith, 2007) I had written in over a decade!
It was reviewed and accepted by the special Bellamy edition
of the journal.

First some definitions: A Hausdorff space is one where for
each pair of points there is a pair of disjoint open sets con-
taining them. And a metric space is one that has a distance
function that satisfies the triangle inequality.

Figure 1. Hausdorff and metric spaces

A continuum is a compact connected Hausdorff space. A
continuum that is the union of two of its proper subcontinua
is said to be decomposable. Following in Figure (2) is a sam-
ple of familiar decomposable continua.

Figure 2. Decomposable Continua

A continuum that is not decomposable is called indecom-
posable. Singleton points are obviously indecomposable; but
showing that there is such a thing as a non-degenerate inde-
composable continuum takes a bit of work. Not only do I
want to convince you that there are such things as indecom-
posable continua, I want to argue that there are lots of them.
This argument is an outline of work due to Bing (1951). To
do that I want to look at the space of subcontinua of a space

and so will introduce some notation: If X is a topological
space then 2X denotes the space of compact subsets of X and
C(X) denotes the subspace of 2X consisting of the subcon-
tinua of X. If X is a metric space then C(X) is also a metric
space. If d is the distance function or metric for X then we
construct a metric D for 2X as follows: first for the element
H of 2X define for a positive number ε:

Dε(H) = {x ∈ X|d(x,H) < ε}

This is essentially an ε-ball around H. Then we define the
“distance” from H ∈ C(X) to K ∈ C(X) by,

D(H,K) = inf {ε |K ⊂ Dε(H) and H ⊂ Dε(K)} .

This is called the Hausdorff metric. The distance from H
to K can be interpreted as the infimum of the epsilons so that
each one of the continua is contained in the epsilon ball of
the other. In the following picture the larger of εH and εK is
the Hausdorff distance from H to K.

Figure 3. The Hausdorff metric

For the Euclidean plane or Euclidean n-space (n > 0), the
space of subcontinua of En is a locally compact metric space
with the Hausdorff metric and so it is a complete metric space
(by which we mean that Cauchy sequences converge.) I will
need the important Baire Category theorem. I state two ver-
sions of the theorem.

• Version 1: A complete metric space is not the union of
a countable set of no-where dense sets.

• Version 2: In a complete metric space, the common
part of a countable collection of dense open sets is non-
empty and dense in the space.

A nowhere dense set M is a set with the property that for
every open set U intersecting M there is an open subset of U
that misses M. The countable common part of a collection of
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open sets is called a Gδ set. One of my favorite theorems (due
to Bing (1951)) uses the Baire Category theorem to prove the
existence of indecomposable continua. It is sort of like prov-
ing that there is an irrational (or transcendental) number by
showing that the complement only forms a countable (and
hence the countable union of nowhere dense sets) subset of
the reals – which is a complete metric space - so that there is
something left over that has to exist.

The Baire category theorem says that, in a complete met-
ric space, the complement of the countable union of nowhere
dense sets is dense in the space. And is, in a sense, a “big”
set. For ease of understanding, let us consider the Euclidean
plane for our construction. The argument works just as well
in higher dimensional Euclidean spaces. Consider now the
set S n of all continua that are the union of two proper sub-
continua that are at least distance 1

n apart in the Hausdorff
metric. One can make the reasonable guess that this set is
closed. I want to claim that it is closed and nowhere dense.
So, in line with the argument, define a countable collection
of sets S n as follows: for each positive integer n let

S n =

{
M|M = H ∪ K; D(H,K) ≥

1
n

}
where H and K are subcontinua of M. These S n’s will be
nowhere dense sets in the hyperspace C(X) of subcontinua of
the plane (or En, n ≥ 2, or n-manifold, or Hilbert space, etc.
) I will argue that these sets are closed and nowhere dense
by picture. First, to see that the sets are closed we need to
know that if pairs of points Hi,Ki stay apart by distance 1

n
then the continua that they limit to also stays apart by at least
that much (this is why we need the equality in the ≥ symbol.)

Figure 4. Closure property of S n

In Figure 5 below the top continuum lies in S n where 1
n

is at most the distance between the middle of the continuum
and the top or bottom edge. The lower continuum, which is

just a “flattening” of the upper continuum, lies in S n for a
much smaller 1

n . So this is a “large” continuum that lies in
S n for a relatively small 1

n . Note that any decomposition of it
into two proper subcontinua would have the top and bottom
bars in different proper subcontinua. In Figure 5 this is indi-
cated as red and blue. Notice that I can make this distance
arbitrarily small by shrinking it along the y-axis even further.

Figure 5. A “large” continuum in S n for a small 1
n

Following is a three step “picture proof” that each S n is
nowhere dense.

1. Consider S N for some N and pick an arbitrary contin-
uum in it and an open set U containing that continuum.

Figure 6. Proof Step 1

2. Find an arc “close” close to it, close in the sense of
lying in U (Figure 7).

3. Fatten the arc to “thin” double sin
(

1
x

)
curve so that this

new continuum still lies in U. Make it thin enough so
that it is not in S N for this integer N (Figure 8). Since
the set S N is closed and this double sin

(
1
x

)
curve is not

in S N , then there is an open set containing this double
sin

(
1
x

)
curve that is a subset of U.

It therefore follows from the Baire category theorem, that
the union of the nowhere dense sets S 1, S 2, S 3, . . . cannot be
all of the subcontinua of the plane. But if M = H ∪ K is
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Figure 7. Proof Step 2

Figure 8. Proof Step 3

a decomposable continuum then there is an integer n so that
the distance from H to K is greater than 1

n : D(H,K) > 1
n and

so the continuum belongs to one of the sets S n. So the “left
over stuff” consists of indecomposable continua.

Indecomposable continua were actually discovered some
decades before Bing published his proof using the Baire cat-
egory theorem. Figure 9 is a graphic of one of the earliest
published example due to Janiszewski (1912). Figure 10 is
an image from his Ph.D. thesis of one of the steps in his con-
struction.

Figure 9. Janiszewski Example 1

Let us modify our definition of the sets S n of continua.
We modify the definition by requiring that each element of
S n to contain rather than be a continuum which can be de-

Figure 10. Janiszewski Example 2

composed into two subcontinua at least 1
n apart: so now let

M ∈ S n if and only if M contains a subcontinuum L = H∪K
so that (H,K) ≥ 1

n . The argument that each S n is closed is
essentially the same. It takes a bit more work to prove each
S n is nowhere dense in C(X), where X is a Euclidean space
of dimension greater than 1 (or Hilbert space or manifolds
of dimension greater than 1) but Bing did this in (R. Bing,
1951). A continuum that does not contain a non-degenerate
decomposable continuum is said to be hereditarily indecom-
posable. So Bing’s result gives us the following theorem.

Theorem 1. If X is an N-dimensional Euclidean space or
manifold, N ≥ 2 or Hilbert space then the subset of the hy-
perspace C(X) of X consisting of the hereditarily indecom-
posable subcontinua of X is a dense Gδ subset of C(X).

Bing actually proved a stronger theorem. He showed
(R. Bing, 1951):

Theorem 2. If X is an N-dimensional Euclidean space or
manifold, N ≥ 2 or Hilbert space then the subset of the hy-
perspace C(X) of X consisting of the hereditarily indecom-
posable chainable subcontinua of X is a dense Gδ subset of
C(X).

Furthermore he showed (R. Bing, 1951) that each two
non-degenerate hereditarily indecomposable chainable con-
tinua are homeomorphic. This object was named the pseudo-
arc, because it has the additional property, like the arc, of be-
ing homeomorphic to each of its non-degenerate subcontinua
(Moise, 1948). The first paper to describe this continuum
was by Knaster (1922). Many mathematicians in addition
to Bing and Moise have studied this object and I mention
the work of Lewis and Mouron as major contributions to the
area.

Before I had stopped doing research, I had published
several papers on the pseudo-arc. My current interest was
in considering non-metric versions of these results and that
leads to my discovery. Start with the first uncountable ordi-
nal ω1 and connect each point to the next one above it in the
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well ordering with a metric interval. Compactify it by adding
the last point ω1 and you have a non-metric arc L. That is:
L is a Hausdorff continuum with exactly two non-cut points.
(That is every point except for the two “end” points sepa-
rates the continuum.) One property of the long line is that
for any x < ω1 the interval [0, x] is just a metric arc and so is
topologically equivalent to the interval [0, 1].

Figure 11. Constructing the long line

Another important property of the long line is that for any
infinite countable sequence bounded above by ω1 there is al-
ways an upper bound of it that is below ω1. So consider a
product of two compactified long lines to produce a compact-
ification of a “long plane” or “long rectangle” R = L × L. I
wanted to consider the possibility of a version of Bing’s theo-
rems for R and to look at the relationship between metric and
non-metric indecomposable subcontinua of this long rectan-
gle. Since this space contained usual metric rectangles, it
contained lots of metric indecomposable continua. Because
every subcontinuum of the long line that misses the ω1 point
is metric it follows that the only non-metric indecomposable
subcontinua of R must intersect either the top or left edge,
L × {ω1} or {ω1} × L respectively.

Figure 12. A standard metric indecomposable continuum in
the long rectangle

Figure 12 shows an indecomposable continuum lying in
my long rectangle. Notice that it is metric because it does
not touch the top and bottom edge. What I discovered was

that any continuum that touches the top and bottom edge has
to be decomposable. So the property of being an indecom-
posable subcontinuum of this space implies that it is metric.
This is a very unusual property. Following is an outline of
the proof in pictures.

Figure 13

Reading the pictures from left to right as usual in Figure
13: The first picture displays an indecomposable continuum
M that touches the right edge {ω1} × L of the space; we as-
sume that such a continuum exists. (I have pictured a curvi-
linear version of the Janiszewski example called the “bucket-
handle.”) For picture 2, we start with an open subset O of
the continuum, whose closure is not all the continuum, and
analyze how the continuum stretches toward the ω1 end. Call
that point of M that is leftmost in the picture P. By properties
of indecomposable continua, O ∪ M will have uncountably
many components; also there will be a point Q so that M is
irreducible from P to Q. In picture 2 then assume that we are
stretching from the point Q inside M. The point Q will be an
“internal” point in the same sense that the Cantor set has “in-
ternal” points that are not endpoints of complementary open
sets.

As we connect the small internal component of the part of
M ∩ O containing Q from the open set O further and further
to the right, we connect up more components of M ∩ O as
picture 3 shows. But as we do this we limit closer and closer
to that end point P near (0, 0) by stretching farther and farther
from the “internal” point Q of M. In a countable number of
steps we have stretched from the internal point Q all the way
to the end point P. But this is done in a countable number of
steps; and from the property of the long line, that stretching is
bounded to the right by ω1. Since the same argument works
for the top ω1 edge, we have limited onto the whole contin-
uum inside of a metric box. So no indecomposable subcon-
tinuum of this long rectangle can touch those two edges and
so there are no non-metric indecomposable subcontinua of
this long rectangle.
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Theorem 3 ((Smith, 2007)). If L is the compactified long line
and M is an indecomposable subcontinuum of L × L then M
is metric.

I distinctly remember figuring this out and realizing that I
had a nice result that I could expand on for that invited pa-
per for that special edition of the journal dedicated to David
Bellamy. I was down the road from Auburn in downtown
Columbus in a little book shop that had easy chairs and
served coffee. I was waiting for my daughter while she took
her oboe lessons and I was in the habit of always buying a
NY Times there and reading it with a cup of coffee while
I waited. That particular day the news must not have been
very interesting (or too depressing). So I pulled out pen and
paper and did some doodling (I always had a clipboard, pen
and paper with me) – I drew some pictures similar to those
in Figure 13 and figured out this basic argument. The rest of
the paper is built on this insight.

What about the product of three copies of the long line
glued together end to end? It turns out that you can kind of
go “through” the ω1 points as is illustrated in Figure 14. The
technique generalizes to the following.

Theorem 4 (Smith (2007)). Every product of three non-
metric arcs contains a non-metric indecomposable contin-
uum.

Figure 14. A non-metric indecomposable subcontinuum in
the product of three non-metric arcs.

So we considered “long planes” made of products of long
lines strung end to end. One can go “through” one of the ω1
points with Janiszewski-like continua. This is done by con-
sidering a longer arc that is a sequence of ω1 long arcs glued
end to end. All that has been done to obtain the non-metric
indecomposable continuum in this new product space, is that
a collection of metric arcs in the Janiszewski example has
been replaced by copies of the compactified long lines. This
is what makes the indecomposable continuum non-metric.
So this product of non-metric arcs contains a non-metric in-
decomposable continuum. I had to use the rectilinear ver-
sion of the Janiszewski continuum as opposed to a “bucket-
handle” continuum like the one pictured in the first step of
Figure 13, because it is not possible to draw a circle in a non-
metric plane (or higher dimensional analogue) since there is

no distance function for these spaces. The first picture in Fig-
ure 13 is very misleading (in fact it is not possible for more
than one reason.)

But what about hereditarily indecomposable subcontinua
of these long rectangles? A short picture proof shows that
this is not possible.

Figure 15

Suppose that there were hereditarily indecomposable go-
ing across those ω1 points as in the left frame of Figure 15.
Then we would have a subcontinuum of it, as in the right
frame of Figure 15, that would lie entirely inside one copy of
that first “long plane” which, I already showed, is impossible.
So in this situation there are no non-metric hereditarily inde-
composable continua in the long rectangle; these hereditarily
indecomposable continua have to all be metric because they
can not go “over” one of the ω1 points. The main theorem of
that paper was:

Theorem 5 (Smith (2007)). Let A be a non-metric Hausdorff
arc such that the set Q ofω1- type of points is no-where dense
and such that for each point p ∈ A−Q there is a metric open
set containing p (as is the case with the long line) then every
hereditarily indecomposable subcontinuum of An is metric
for n > 1 with n finite or countable.

This connection with a mathematical friend led to a won-
derful reassuring experience in doing research. The other
event that happened while I was chair around this time was
the appearance of a graduate student in my office. She had
returned to continue her work on the Ph.D. after leaving the
department for a period of time. She said that she was in-
terested in continuum theory and asked about working with
me. I told her that I had not done much research in quite
a while and that since I was department chair I would have
limited time and it would sometimes be difficult to meet; so
she would have to be willing to do a lot of the work on her
own. I had been recommended to her by one of her mentors
(and a good friend of mine). She indicated that she would
like to learn some continuum theory anyway. That much I
could do.

There was concept that I was interested in learning more
about and so we spent some time learning about Hyperspaces
(which I mentioned earlier) and a function called a Whitney
map (see S. Nadler (1978) for background material on hyper-
spaces.)
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Definition 1. If X is a Hausdorff space, then 2X denotes the
hyperspace of compact subset of the space X with the Vietoris
topology; C(X) denotes the subspace of 2X consisting of the
subcontinua of X. Classically, if X is a metric space then a
mapping µ : 2X → [0,∞) is called a Whitney map if it is a
continuous function so that:

1. µ({p}) = 0 for all p ∈ X,

2. if H,K ∈ 2X and H ⊂ K, H , K, then µ(H) < µ(K).

It follows from a theorem of V. E. Sneider (1945) that if
X is compact and there is a Whitney map on 2X then X has
to be a metric space. However, I wondered, and this was the
question that I asked the graduate student, if it is possible to
have a Whitney map on C(X) for some non-metric continuum
X? With my encouragement, she found a continuum that was
non-metric every proper subcontinuum of which was an arc;
and using that fact she built a Whitney map on it. (Using, of
all things, the arctan function.) Back in the 70’s I had con-
structed a continuum every proper subcontinuum of which
was metric (Smith, 1976). It is pretty easy to see that the
union of two intersecting metric continua is a metric contin-
uum. So a non-metric continuum every proper subcontinuum
of which is metric must be indecomposable! – since two in-
tersecting proper subcontinua of it could not add up to the
whole thing. (See Figure 16.)

Figure 16

Her continuum looked something like the one pictured be-
low in Figure 17. If you take the common part of a sequence
of thinner and thinner tori (doughnuts) each one of which
does a double loop in the previous one, then you have the
metric solenoid.

My student’s construction was a lot like the solenoid. As
I indicated earlier, in the non-metric setting it is easiest to do
things rectilinearly. Which is why the doughnut looks like it
was made of Lego blocks. Look at the indicated cut across
the continuum.

The left image shows successive cuts that the tori make
in the cross sectional cut shown in Figure 18 and the right
image is the cross section of common parts of all the tori.

Figure 17

Figure 18

For the metric solenoid, this is the well-known Cantor set.
For my student’s construction, it is a non-metric analogue of
the Cantor set called the Double Arrow space. This is a well-
studied separable compact totally disconnected non-metric
space.

Sadly it turned out that Charatonik (2000) had shown
that a non-metric indecomposable example of Guteck and
Hagopian (1982) supported a Whitney map of the type that
we wanted. So I asked her, “Well can you get one that has
the property that every (non-degenerate) subcontinuum of it
is non-metric?” This she did, after many hours in my office
catching me when she could; her example evolved into her
Dissertation. She essentially used a process of “blowing up”
uncountably many well distributed points of her first exam-
ple into a copy of her original continuum; repeating this pro-
cess infinitely many times and in such a way that every non-
degenerate subcontinuum has to pass through one of these
blown-up points (Smith & Stone, 2014; Stone, 2008).

Theorem 6 (Stone (2008)). There exists a non-metric con-
tinuum that supports a Whitney map every non-degenerate
subcontinuum of which is non-metric.

So in spite of my research doldrums and now busy sched-
ule as chair I was able to direct a Ph.D. student. It occurred
to me that if I could successfully direct a graduate student
to do original creative research then (obviously it seemed to
me) I should be able to “direct” myself to do the same. So
I went back to that paper about hereditarily indecomposable



8 ALABAMA JOURNAL OF MATHEMATICS

subcontinua of the product of non-metric arcs with those ω1-
type of points. The natural question is what about the exis-
tence of hereditarily indecomposable continua in other non-
metric arcs. So I considered the lexicographic arc, this is
a well-studied non-metric arc. It is actually the square disc
with the points ordered according to the dictionary or “lexi-
cographic” ordering.

Definition 2. The lexicographic arc: Let L = [0, 1] × [0, 1]
and define a “dictionary” order <L on L as follows: (a, b) <L

(c, d) if and only if:
a < c or

a = c and b < d.

The space L with the topology induced by the order <L is a
non-metric arc.

Figure 19. Lexicographic arc and the square of two lexico-
graphic arcs.

The left picture of Figure 19 is the lexicographically or-
dered square disc with a couple of basic open sets shown.
Note that it is easy to see that it is not metric because it con-
tains uncountably many disjoint open sets: each set of the
form {x} × (0, 1) is open. It has the property that every open
set contains a copy of the reals. Two typical open subsets
of L are shown in the left diagram; note that one of them
looks like an ordinary open interval of the reals and the other
contains uncountably many disjoint such intervals. The order
topology makes it into a Hausdorff arc.

Although I have it pictured as a square, it really is not
anything like a square. In the right picture two of these arcs
have been stretched out and made into a non-metric square
by taking the product of two of them. You can envision L
by thinking of [0, 1] with each point blown up into a copy
of [0, 1]. Similarly you can envision L × L as [0, 1] × [0, 1]
with each point blown up into a copy of [0, 1] × [0, 1]. My
question was what could be said about the non-metric inde-
composable and hereditarily indecomposable subcontinua of
L× L. As with the long rectangle examined above, this space
contains lots of metric indecomposable and hereditarily in-
decomposable continua. I discovered the following (Greiwe,
Stone, & Smith, 2014).

Theorem 7 (Greiwe et al. (2014)). Every non-metric inde-
composable subcontinuum of L × L contains an arc.

Corollary 1 (Greiwe et al. (2014)). If L is the lexicographic
arc then every hereditarily indecomposable subcontinuum of
L × L is metric.

This result eventually led to a joint paper with R. Greiwe
and J. Stone (2014). So now I had a “research topic” to di-
rect myself on. I want to outline the argument that L × L
does not contain a non-metric hereditarily indecomposable
continuum.

Suppose that M is a subcontinuum of L × L that is non-
metric and lies entirely inside a copy of [0, 1] × L as in the
image in Figure 20. Then, since it is non-metric, it has to
intersect uncountably many copies of [0, 1] × [0, 1]. Then
there will be a sequence of subcontinua Mt1 ,Mt2 ,Mt3 , . . . of
M that limit to an arc. Now suppose that M intersects more
than one column as in Figure 21. Then there is a non-metric
sub-continuum of it (the dark blue) that intersects a copy of
[0, 1] × L and so, by the previous result, contains an arc.

Figure 20

It turns out that the argument works for the lexicographi-
cally ordered cube and so on to higher dimensions.

So I started looking at products of other non-metric Haus-
dorff arcs. The plan was to either find non-metric hereditarily
indecomposable subcontinua in them or show that none were
possible. Next I looked at the Souslin line. It is different from
the reals in a particularly interesting way. A Souslin line is
a connected linearly ordered space (different from the reals)
which does not contain uncountably many disjoint open sets.
The existence of Souslin lines is independent of the axioms
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Figure 21

of set theory and so may or may not exist depending on the
axioms of set theory used. A Souslin arc is just a Souslin line
that has been compactified by adding a first and last point.
The following theorem led to another publication.

Theorem 8 (Smith (2009)). Suppose that S is the Souslin
arc. Then every hereditarily indecomposable subcontinuum
of S × S is a metric continuum.

I also showed that the only way that S × S can contain a
non-degenerate hereditarily indecomposable continuum is if
the Souslin line under consideration contains a copy of the
reals and the hereditarily indecomposable continuum lies in
the product of two of these copies of the reals.

Theorem 9 (Smith (2009)). Suppose that S is a Souslin arc,
that Y is any Hausdorff arc and that M is a hereditarily in-
decomposable subcontinuum of S × Y so that the projection
on the second coordinate is all of Y. Then Y is a metric arc.

With my successful production of a Ph.D. student, Jen-
nifer Stone (Actually co-directed between myself and her
former mentor Dr. Jo Heath), another student came to me
and indicated an interest in working with me. She had writ-
ten a Master’s thesis on the lexicographic arc and so I had
the perfect problem for her: Is every hereditarily indecom-
posable subcontinuum of the product of three Lexicographic
arcs metric? It took a while and involved developing new
techniques – but she did it. So I produced another Ph. D.
student.

Theorem 10 (Greiwe (2009)). Let L denote the lexico-
graphic arc. Then every hereditarily indecomposable sub-
continuum of L × L × L is metric.

Once you start thinking about mathematics problems, it
becomes almost a subconscious activity. You will drift off in
the middle of something and start puzzling over a problem.
Since I am talking about things that inspire, and jump starts,
research I want to relate an incident that led to another dis-
covery and subsequent paper. This occurred when the next
student Regina Greiwe had her final Ph.D. defense.

As you well know, the committee members test the stu-
dent’s knowledge on the material related to her (or his) dis-
sertation. Dr. Gary Gruenhage was on her committee and
he had a question. Since she had been working with non-
metric hereditarily indecomposable continua, he asked her
about those type of continua. The examples that she had dis-
cussed were either metric or not perfectly normal (an impor-
tant set theoretic property: a perfectly normal space is one
where every closed set is a Gδ set). So he asked, “Do you
have an example of a non-metric perfectly normal hereditar-
ily indecomposable continuum.” She didn’t know the answer
to the question! (And was very worried, at a Ph.D. defense,
students expect to be able to answer ALL the questions.)

I admitted, at the defense, to the committee that I did not
know the answer either. Neither, apparently, did Dr. Gruen-
hage. She passed her defense. But that problem stuck with
me – I should have known the answer; in my past research –
now some two decades old - I had produced many non-metric
hereditarily indecomposable continua; none were perfectly
normal – I checked mentally the ones I remembered at the
defense exam. Then, and I want to say it was that night – my
memory is fuzzy. But in any case one night soon thereafter,
I woke up at 3:00 am in the morning and I knew the answer!
It was an example that was in my previous student Jennifer
Stone’s dissertation. It looked perfectly normal – but we had
to prove it!

So the three of us met weekly at a local public house, per-
haps in a small way emulating the famous group of mathe-
maticians from the Lwow School of Mathematics in Poland
who met at the Schottish Café where they discussed math-
ematics. Together we showed that the example was indeed
perfectly normal, put together some other pieces (e.g. the
hereditary indecomposablity) and sent off a paper. I assumed
that if Gary Gruenhage did not know the answer, probably
nobody did.

Theorem 11 (Greiwe, Stone, and Smith (2012)). There ex-
ists a separable perfectly normal, and hence first countable,
non-metric hereditarily indecomposable continuum.

The paper was eventually accepted for publication. We
worked well together and together we re-examined the ar-
gument that I had about hereditary indecomposable subcon-
tinua of the product of two lexicographic arcs and produced
another joint paper.

Theorem 12 (Greiwe et al. (2014)). Let L denote the lexico-
graphic arc. Then L × L × L contains a non-metric indecom-
posable continuum that does not contain an arc.

This showed that one of my results on the product of two
lexicographic arcs does not extend to the product of three
of them. It is still not known if every hereditarily indecom-
posable subcontinuum of the product of three Souslin arcs is
metric.
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One last story. During my non-research period I stopped
going to meetings – I figured that since I did not have any-
thing to present I should not attend. I now understand that
this was a bad idea! In any case, I started to attend the an-
nual Spring Topology Conference again and present my new
results.

Seeing other people’s work gave me more problems to
work on and more ideas to try out on my favorite problems.
At one of these meetings I touched base again after a few
years, with my former professor Bill Mahavier. He told me
that since he did not have any graduate students working with
him he started working on some problems that he had saved
up as potential directions for some future doctoral student.
One of these ideas was the concept of generalized inverse
limits. He collaborated with Tom Ingram and they converted
his ideas into a couple of papers (Ingram & Mahavier, 2006;
Mahavier, 2004) and eventually a book (Ingram & Mahavier,
2012). The book appeared just a few years before Mahavier
passed away.

As a result of our discussions at that meeting, he gave me
copies of these first couple of papers on the subject with the
encouragement to work in the area; he was still my major
professor. I felt like an excited graduate student again after
some decades. Also, as chair, I had some obligation to attend
some mathematics meetings and in particular I went to the
annual Joint Mathematics Meetings which are traditionally
held in January in various large cities that can handle five to
seven thousand mathematicians and their groupies. I mainly
attended to interview candidates for tenure track positions at
Auburn at the employment center part of the meeting.

I distinctly remember being in New Orleans at one of these
meetings. And as you know there is nothing to do in New Or-
leans and so I found myself alone one day eating this excel-
lent, sloppy looking, dish called filé gumbo; and in spite of
the culinary pleasure, I started looking at one of these papers.
(Okay, I will be honest: I spent much of my free time at this
little café that had wonderful shrimp ratatouille, a statue of
Louis Armstrong out front and lots of music – and of course,
beer. I forget why I was bored at the filé gumbo restaurant; it
could have been no music and no beer and I was just hungry.
I always doodled mathematics at these meetings – whether
or not there was music.) At the time I had acquired another
graduate student and he (yes “he” and not “she”) had become
interested in inverse limits. So I defined the generalized in-
verse limit concept of Mahavier and Ingram with upper semi-
continuous set valued maps and gave him lots of questions
and free rein. Like me, he was interested in indecomposable
continua. So now I will discuss some background on inverse
limits.

Definition 3. Let {Xn}
∞
n=1 be a sequence of spaces and { fn}∞n=1

be a sequence of functions with fn : Xn+1 → Xn. Then
the inverse limit lim← {Xn, fn}∞n=1 is the subset of the product∏∞

n=1 Xn consisting of all the points {pn}
∞
n=1 so that fn(pn+1) =

pn.

Figure 22. The classical inverse limit.

The beauty of inverse limits is that some apparently sim-
ple inverse limits can produce complicated spaces. This gives
topologists a tool that can be used to study complex spaces.
Consider the function of the left box of Figure 23; the in-
verse limit so that each coordinate space is the unit inter-
val [0, 1] and so that each bonding map is the function fn
is the Janiszewski indecomposable continuum (also called
the bucket-handle). The one where each bonding map is the
function on the right produces the topologist’s sin

(
1
x

)
contin-

uum.

Figure 23. Inverse limit bonding maps.

Mahavier and Ingram generalized the classical inverse
limit as follows.

Definition 4. Let {Xn}
∞
n=1 be a sequence of spaces and { fn}∞n=1

be a sequence of set-valued upper semi-continuous functions
with fn : Xn+1 → 2Xn . Then the generalized inverse limit
lim← {Xn, fn}∞n=1 is the subset of the product

∏∞
n=1 Xn consist-

ing of all the points {pn}
∞
n=1 so that pn ∈ fn(pn+1).

Definition 5. The function f is upper semi-continuous if and
only if for each open set U containing f (x) there exists an
open set V containing x so that if t ∈ V then f (t) ⊂ U.

The set-valued bonding map on the left of Figure 24 is
upper semi-continuous and the one on the right is not. Below
in Figure 25 is a diagram for an inverse limit with set-valued
bonding maps. Because of the set-valued nature of the func-
tion, one point may be mapped onto more than one point.

Generalized inverse limits became the topic of his disser-
tation. I was pleased that a topic that Mahavier had saved for
one of his students became a dissertation topic for one of his
mathematical grandchildren. Among other things he proved
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Figure 24. Set valued bonding maps.

Figure 25. Generalized inverse limit with set-valued bonding
maps.

that the generalized inverse limit on the unit interval using
the sin

(
1
x

)
-like graph of Figure 25 as the bonding map (which

only has one point with a non-degenerate image) produces an
indecomposable continuum (Varagona, 2011, 2012).

Figure 26. Generalized inverse limit yielding an indecom-
posable continuum.

Around this time, at one of the topology meetings, Van
Nall asked the following question, “Can every metric con-
tinuum be expressed as the generalized inverse limit of the
metric interval [0, 1] with the same bonding map?” And
I was able to answer it in the negative: I pointed out that
since, by a theorem of Van Nall himself 2012, every 2 di-
mensional generalized inverse limit of the metric arc with the

same bonding map contains an arc, every higher dimensional
hereditarily indecomposable subcontinuum (such as the ex-
amples of these produced by Bing 1951) is a counterexam-
ple since, by their property of indecomposability, they do not
contain arcs. To me the solution was easy once you know the
background and a little about hereditarily indecomposable
continua; all I did was observe how the pieces can be put
together. Van Nall’s question, rephrased in the case where
the bonding maps are not required to all be the same, has not
been answered as of the time of this writing.

I keep in touch with my former student Scott, and I met
him at the 2013 Spring topology conference. I had not done
any work in generalized inverse limits myself (except for the
observation that answered Van Nall’s question.) But I was
interested in the area. We were sitting in one of the confer-
ence rooms between the talks and he was telling me about
his latest result in the area.

He had shown that a certain generalized inverse limit is
indecomposable. I suggested the possibility of an even more
generalized inverse limit where the functions are set-valued
but not necessarily upper semi-continuous and where, except
for the first coordinate, the coordinate spaces are not even
Hausdorff - and in fact were finite connected T1 spaces. He
thought that it had a chance to work, so I ended up proving
a theorem that argued that we could express a wide range
of metric continua with generalized inverse limit with set-
valued maps where, except for the first coordinate, each co-
ordinate space was a finite non- Hausdorff space (Smith &
Varagona, 2014), the author was first made aware of this type
of construction through work of S. Baldwin 2007 that was
presented in the Continuum Theory Seminar at Auburn.)

Figure 27. Inverse limit with finite coordinate spaces.

The inverse limit expressed by the diagram of Figure 27
has [0, 1] as its first coordinate space and each subsequent
space is a five point space with a basis of the topology ex-
pressed by the green sets. This inverse limit is equivalent
to the Janiszewski indecomposable continuum already dis-
cussed several times above. The theorem proved that all the
spaces with the bonding maps picture below in Figure 28 are
homeomorphic.
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Figure 28. Bonding maps that produce equivalent indecom-
posable continua.

The beauty of the theorem is that a finite set of points is
often much easier to work with than an infinite uncountable
set.

So what can I recommend to someone who is interested
in increasing or resurrecting his or her research program that
had fallen off? I suggest:

• Keep in touch with other members of the research
community.

• Collaborate with graduate students and/or colleagues,
organize seminars.

• Go to meetings.
• Play with the old problems that interest you.
• Work on more than one research line.
• Stay in touch with mentors.
• Become chair of your department.

You might skip that last one; but I have to confess that
as chair of a mathematics department I wanted to serve as
a good example to the department faculty of what a mathe-
matician does: and that includes research as well as teaching
(and involvement in grant work.) Most importantly, whether
it is new or old, whether it has been done before or not: -
- work on mathematics problems and enjoy playing around
with it– it is fun.
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