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The edges of the complete bipartite graph K,,,, can be colored with & colors appearing so that
no cycle subgraph is rainbow if and only if k € {1, ..., m+n—1}. The rainbow-cycle-forbidding
edge-colorings of K, , with n + 1 colors appearing are completely characterized and counted.

Introduction

For standard notation, terminology, and elementary facts
in graph theory, see [West (2001) or any of the several excel-
lent graph theory textbooks now available. The only graphs
that will play a role here are K,,, the complete graph on n
vertices, K, ,, the complete bipartite graph with m vertices
in one part and n in the other, and C,, the cycle on #(> 3)
vertices. An edge-coloring of a graph is just what it sounds
like, an assignment of “colors” or “symbols” to the edges of
the graph, one color to each edge. If G is edge-colored, a
subgraph H of G is rainbow with respect to that coloring if
and only if no two different edges of H bear the same color.
If there are no rainbow copies of H in edge-colored G,we say
that the edge-coloring of G forbids rainbow H.

Most anti-Ramsey theory has to do with conditions un-
der which there is an edge-coloring of a graph G which for-
bids rainbow H, for some H; almost always, G is a complete
graph and H is either a smaller complete graph or one of the
“usual suspects”, such as a cycle or a path. For instance,
Gouge, Hoffman, Johnson, Nunley, and Paben|(2010) depart
from the following, which was well-known long before.

Theorem 1. Suppose thatn > 3 and t > 1 are integers. The
following are equivalent.

(a) There is an edge-coloring of K,, with ¢ colors appearing
which forbids rainbow cycles.

(b) There is an edge-coloring of K,, with ¢ colors appearing
which forbids rainbow K3(= C3).

(c) t<n-1

One of the results in|Gouge et al.|(2010) characterizes the
rainbow-cycle-forbidding edge-colorings of K, with n — 1
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colors appearing, sufficiently well that the essentially differ-
ent such colorings can be counted. The discoveries to be pre-
sented here were inspired by the desire to find results parallel
to these in |Gouge et al| (2010), with K, , replacing K, and
with Cy, the shortest cycle in K,,,, replacing C3, the short-
est cycle in K,. Perhaps predictably, just because K,,, is a
less “dense” graph than K,,,,, and therefore the constraint
of coloring to avoid rainbow cycles is less constraining in
K0, permitting too rich a variety of colorings for a succinct
description, we have not succeeded! But we do have some
results of interest; and perhaps someone will see something
in these results that we have missed.

Results

Theorem 2. Suppose that m,n and t are positive integers.
The following are equivalent.

(a) There is an edge-coloring of K,,, with t colors appear-
ing which forbids rainbow cycles.

(b) There is an edge-coloring of K, with t colors appear-
ing which forbids rainbow Cj.

(c) t<m+n-1.

Proof. Clearly (a) implies (b).

Suppose that an edge-coloring of K, , admits a rainbow
cycle. Since the only cycle subgraphs of K, , are Co4, g > 2,
the rainbow cycle is one of these. If g > 2 then there is a
chord of the rainbow Cy, i.e., an edge joining two vertices
on the cycle which are not adjacent on the cycle, which is an
edge of K,,,,. See Figure[I]

The vertices of the chord are the endvertices of two paths
on the rainbow C5,. With each path the chord makes a cycle
subgraph of K, , with fewer than 2¢ vertices. At least one of
these cycles is rainbow, because the color appearing on the
chord cannot appear on both paths, since the Cy, is rainbow.

Therefore, the existence of a rainbow cycle of order > 4
in an edge-colored K, , implies the existence of a shorter
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Figure 1. Chords of Cg and Cg which are edges of any K,
of which these cycles are subgraphs.

rainbow cycle. Therefore, the existence of a rainbow cycle
implies the existence of a rainbow Cy4. Thus (b) implies (a).

Suppose that ¢ > m + n and K,,, is edge-colored with
t colors actually appearing. Take m + n edges of different
colors, and let G be the subgraph of K, ,, “induced” by these
edges. Then G is a graph with m + n edges on no more than
m + n vertices. By a fundamental result of graph theory, G
has a cycle subgraph. Since G is a rainbow subgraph of K, ,,
it follows that K, , has a rainbow cycle subgraph. Thus (a)
implies (c).

To prove that (c) implies (a), clearly it suffices to show
that K,,,,, can be edge-colored with m + n — 1 colors so that
there is no rainbow cycle subgraph. We proceed by induction
on m + n. At the beginning, m = n = 1 and the claim to be
proven is obviously true.

Suppose that m + n > 1. Without loss of generality, we
suppose that n > 1. Applying the induction hypothesis let
K., »-1 be edge-colored with m+n—2 colors appearing so that
there is no rainbow cycle subgraph. Introduce a new vertex
to form K, ,, and color all m edges incident to the new vertex
with a single color, different from the m +n—2 colors already
appearing. Clearly the result is an edge-coloring of K, , with
m + n — 1 colors with no rainbow cycle subgraph. O

If K., is edge-colored, we will say that a color ¢ appear-
ing in the coloring is dedicated to a vertex v of K,,, if the
edges c appears on are all incident to v.

Corollary 1. Suppose that K, , is edge-colored with m+n—1
colors appearing so that there are no rainbow cycle sub-
graphs. Then for each vertex of K, there is at least one
color dedicated to that vertex.

Proof. Suppose that K,,, , is so colored, and that v is a vertex
of K,,,. If no color is dedicated to v then m + n — 1 colors
appear on the edges of K,,,, — v € {Ky—14, Knn-1}, which
would imply, by Theorem E], that K,,,, — v, and thus K, ,,
contains a rainbow cycle subgraph. O

Corollary 2. Suppose n > 2. An edge coloring of K, with
n + 1 colors appearing forbids rainbow Cy4’s if and only if
there is a one-to-one correspondence between the n vertices

in one part and a set of n of the colors such that each of the
vertices corresponds to a color dedicated to it.

Proof. 1f the coloring forbids rainbow Cy’s then by Corollary
[[Jeach of the n vertices has at least one color dedicated to it,
and clearly no color can be dedicated to two different vertices
in the same part, so the one-to-one correspondence exists.
On the other hand, suppose the vertices in one part of K5 ,,
are vy, ..., v, and the colors appearing in the edge-coloring
are ¢y, ¢y, - - . , Cy, With ¢; appearing only on edges incident to
vi,i=1,...,n. Every C4 in K, , will contain two vertices v;
and v; for some 1 < i < j < n. If both edges incident to v;
are colored c; then no C4 containing v; is rainbow. Therefore
the only way C4 containing v; and v; can be rainbow is if ¢;
appears on only one of the two edges incident to v;, and c;
on only one edge incident to v;. But then ¢y appears on two
edges of the Cy4, so the Cy is not rainbow. O

Two edge-colorings of a K, , with labeled vertices are es-
sentially the same, or equivalent, if a relabeling of the ver-
tices and a renaming of the colors transforms one coloring
into the other. If two edge-colorings are not essentially the
same, then they are different.

Theorem 3. Suppose that n > 3. The number of different
edge-colorings of Ky, with n + 1 colors appearing which
forbid rainbow Cy4’s is nmtt) if nis even, and M%, ifnis
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odd.

Proof. Let the parts of K, be

W=A{wi,wp}and N = {vq,...,v,}.

Let the colors appearing in our edge-colorings be cy, ..., ¢y,
with ¢; dedicated to v;, i = 1,...,n. Then each v; has either
both edges incident to it colored ¢;, or one colored c¢; and the
other colored c¢y. We may assume, after possibly renaming
the v;, that the color ¢; appears twice at v;, 1 <i < n— p, and
onlyonce atv;,n—p <i<nforsomepe{l,....,n};p>1
because ¢ has to appear somewhere.

Clearly edge-colorings associated with different values of
p are essentially different. We claim that to each value of
p there correspond exactly | 5| + 1 different edge colorings.
To see this, observe that for a given p, and a given coloring
associated with p, co will appear j times at one of the w;, and
p — j times at the other, for some j € {0,..., |_§J}.

Two colorings are obviously equivalent if this statement
holds for the same value of j, and are different otherwise.

Therefore the number of different colorings is Zzzl (|.§J +
1), which is easily seen to equal the value given in the theo-
rem statement. O

The argument in the proof of Theorem3|counts 3 different
colorings of K,, with 3 colors, but two of these are equiva-
lent, because the vertices of K;» can be renamed so that the
parts in the bipartition switch places.
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Theorem [3]is made possible by Corollary 2} which suffi-
ciently specifies the form of a rainbow-Cy-forbidding edge-
coloring of K,, with n + 1 colors appearing to make the
counting possible. For 3 < m < n we do not have such a
useable characterization of the rainbow-Cy4-forbidding edge
colorings of K, , with m + n — 1 colors appearing. We do,
however, have the following, which almost qualifies as a re-
cursive rule for the formation of all such colorings.

Theorem 4. Suppose that 2 < m < n. Every rainbow-
cycle-forbidding edge-coloring of K,,,, with m + n — 1 col-
ors appearing is obtainable by extending a rainbow-cyle-
forbidding edge-coloring of K, ,—1 with m + n — 2 colors
appearing.

Proof. Suppose we have a rainbow-cycle-forbidding edge-
coloring of K,,, with m + n — 1 colors appearing. By Corol-

lary E], each vertex of Kj, , has at least one color dedicated to
it. The n sets of colors dedicated to the vertices in the part
of size n are pairwise disjoint. If each one of those sets were
to have 2 or more elements, then the total number of colors
appearing would be > 2n > m+n — 1. Therefore, at least one
of those n vertices, call it v, has exactly one color dedicated
to it. Therefore, the coloring restricted to K, , =V = K, -1 s
rainbow-cycle-forbidding and has (m+n—-1)—1=m+n-2
colors appearing. O
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