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Abstract. Since common rules of counting are not easily
applied in some cases, we present an efficient method of
counting based on the utility of sigma notation. For exam-
ple, given n cards, numbered consecutively from 1 to n, we
devise a way to determine the number of ways that r cards
can be selected from the n in such a way that the relative
order of the r cards is preserved.

Next, we introduce a method for counting the number
of non-negative integer solutions of an indeterminate equa-
tion

Pm−1
i=1 aixi+am (xm)

k = n; in which k,m, n ∈N and
such that for i = 1, 2, . . . ,m − 1; ai|ai+1. We also give a
solution for the number of solutions of the corresponding in-
equality. Finally, we introduce a method for approximating
the number of non-negative integer solutions of indetermi-
nate equations and inequalities.

Part I - An Application of Sigma Notation in Counting
Introduction

To determine the number of outcomes of an experiment, which
is composed of other experiments, one can use the addition and
multiplication principles of the so-called “counting rules.” Some-
times, we are faced with a different situation. For example, if we
wish to select r cards randomly from n cards, numbered consecu-
tively from 1 to n, in such a way that the numbering of the selected
cards is not necessarily consecutive, the multiplication principle can
not be applied because the selection of first card up to rth card, is
carried out dependently. Let’s take a simple case into account as
an application of the sigma notation. Suppose that we are going to
determine the number of ways in which two cards are selected from
n cards, numbered from 1 to n, in such a way that the number of

[1]
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the first card is less than the second. Note that this is equivalent to
determining the number of lattice points (x1, x2) in the “Cartesian
plane” such that 1 ≤ x1 < x2 ≤ n. The situation is shown in figure
1.

x2 = x1

x2

x1

n
n ! 1
n ! 2

1
2

3

!

Figure 1 {(x1, x2) : x1, x2 ∈ Z, 1 ≤ x1 < x2 ≤ n}
To determine the number of lattice points, by applying sigma

notation, we have:

|{(x1, x2) : x1, x2 ∈ Z; 1 ≤ x1 < x2 ≤ n}|
= |{(x1, x2) : x1, x2 ∈ Z; 1 ≤ x1 < x2; 2 ≤ x2 ≤ n}|
= |{(x1, x2) : x1, x2 ∈ Z; 1 ≤ x1 ≤ x2 − 1; 2 ≤ x2 ≤ n}|
=
Pn

x2=2

Px2−1
x1=1

1 =
Pn
x2=2

(x2 − 1) = n(n−1)
2 .

Generally, if one experiment A can result in any of m possi-
ble outcomes and if another experiment B can result in any of n
possible outcomes, and the experiment L is defined by performing
experiments A and B in consecutive stages, then L yields m ·n out-
comes, each of which can be represented as an ordered pair (a, b) ,
where a is an outcome of A and b is an outcome of B. Them·n out-
comes can be represented by m · n lattice points inside a rectangle
in the Cartesian plane. If there are constraints in the performance
of two or more experiments, their corresponding points inside the
rectangular or multi-dimensional cell will be considered so that we
can easily determine the range of the variables and the bounds
of repeated sigma notations in order to determine the number of
related lattice points.
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Main Results

Based on the aforementioned points, we illustrate the suggested
method through one theorem, one problem, and a few examples.

Theorem 1. If r cards are selected with replacement from n
cards, numbered from 1 to n, and Xi is the number of ith card
selected, then:

P (X1 ≤ X2 − k1,X2 ≤ X3 − k2, . . . ,Xi ≤ Xi+1 − ki, . . .

. . . ,Xr−1 ≤ Xr − kr−1) =

⎛⎝ n+ r − 1−Pr−1
j=1 kj

r

⎞⎠
nr .

Proof. In a special case where the ki ’s are assumed to be
positive and equal, the problem has been considered (see 1). If the
ki ’s are non-negative, then:

X1 ≤ X2 − k1,X2 ≤ X3 − k2, . . . ,Xi ≤ Xi+1 − ki, . . .
. . . ,Xr−1 ≤ Xr − kr−1

Can be written as follows:

1 ≤ X1 ≤ X2 − k1 ≤ X3 − (k1 + k2) ≤ . . . ≤ Xr−1 −
Pr−2
j=1 kj

≤ Xr −
Pr−1

j=1 kj ≤ n−
Pr−1
j=1 kj . (eq. 1)

We now endeavor to determine the number of lattice points
in r-dimensional space, which correspond to inequality 1. Given
the fact that

Qn
i=1mi =

Pmk

xk=1

Pmk−1
xk−1=1 . . .

Pm1

x1=1
1 as well as the

range of variables in eq. 1, we have:

nX
xr=

Pr−1
j=1 kj+1

xr−kr−1X
xr−1=

Pr−2
j=1 kj+1

. . .

x3−k2X
x2=k1+1

x2−k1X
x1=1

1

=
nX

xr=
Pr−1

j=1 kj+1

xr−kr−1X
xr−1=

Pr−2
j=1 kj+1

. . .

x4−k3X
x3=k1+k2+1

x3−k2X
x2=k1+1

(x2 − k1)

(eq. 2)

By redefining the index in the right-most sum as j = x2 − k1,
redefining the index in the sum to its immediate left as j = x3 −
(k1 + k2 + 1), and by using the fact that

Pn
j=1 j =

¡
n+1
2

¢
eq. 2

becomes:
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nX
xr=

Pr−1
j=1 kj+1

xr−kr−1X
xr−1=

Pr−2
j=1 kj+1

. . .

x4−k3X
x3=k1+k2+1

x3−(k1+k2)X
j=1

j

=
nX

xr=
Pr−1

j=1 kj+1

xr−kr−1X
xr−1=

Pr−2
j=1 kj+1

. . .

x5−k4X
x4=

P3
j=1 kj+1

x4−
P3

i=1 ki−1X
j=0

µ
j + 2

j

¶
.

The previous statement can be re-written as follows (see 2):

nX
xr=

Pr−1
j=1 kj+1

xr−kr−1X
xr−1=

Pr−2
j=1 kj+1

. . .

. . .

x6−k5X
x5=

P4
j=1 kj+1

x5−k4X
x4=

P3
j=1 kj+1

µ
x4−

P3
j=1 kj+2

3

¶

=
nX

xr=
Pr−1

j=1 kj+1

xr−kr−1X
xr−1=

Pr−2
j=1 kj+1

. . .

. . .

x6−k5X
x5=

P4
j=1 kj+1

x5−
P4

i=1 ki−1X
j=0

µ
j + 3

j

¶

= . . . =

µ
n+ r − 1−Pr−1

j=1 kj
r

¶
. (eq. 3)

The correctness of eq. 3 can easily be verified by induction.
Therefore, if

Pr−1
j=1 kj ≤ n− 1, we have:

P (X1 ≤ X2 − k1,X2 ≤ X3 − k2, . . . ,Xi ≤ Xi+1 − ki, . . .

. . . ,Xr−1 ≤ Xr − kr−1) =

⎛⎝ n+ r − 1−Pr−1
j=1 kj

r

⎞⎠
nr .

¤
Note: If our experiment is modified such that the cards are

selected without replacement, the number of outcomes can also be
determined by eq. 3. The experiment of selecting r objects from n
objects (without replacement) is tantamount to our experiment of
selecting r cards from n cards such that ki = 1 for i = 1, 2, . . . , r−1,
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and the experiment of selecting r objects from n distinct objects
(with replacement) is tantamount to our experiment of selecting r
cards from n cards such that ki = 0 for i = 1, 2, . . . , r − 1. This
is a special case of eq. 3 and the number of outcomes is given by¡
n+r−1

r

¢
(see 2).

Example 1 If 3 cards are selected, with replacement, from 100
cards, numbered from 1 to 100, compute the probability that the
number of the first card is at least 10 less than the number of the
second card and the number of the second card is at least 20 less
than the third.

Applying Theorem 1, we have: n = 100, r = 3, k1 = 10,
k2 = 20, and

P (X1 ≤ X2 − 10, X2 ≤ X3 − 20) =

µ
100 + 3− 1− (10 + 20)

3

¶
1003

= 59640
1003 = 0.06.

Next, we consider the multiplicative analog of this example.

Problem 1 If r cards are selected, with replacement, from n cards,
numbered from 1 to n, compute the number of ways in which the
number of the ith card selected is less than or equal to ki times the
number of the (i+ 1)st card.

In this case, we have, analogous to Theorem 1:

X1 ≤ k1X2, X2 ≤ k2X3, . . . ,Xi ≤ kiXi+1, . . . ,≤ Xr−1 ≤ kr−1Xr.

Given the relations above, we can use sigma notation to deter-
mine the number of outcomes. But since determining the bounds
of sigma notation is dependent on the values of n and r, it is im-
possible to reach a general formula. Therefore, we present more
explanations in a special case by means of an example.

Example 2 Given the scenario of Example 1, suppose we want to
determine the number of ways that the three cards can be selected,
such that x1 ≤ 5x2 and x2 ≥ 2x33 + 7. We have:

x3 = 1, 9 ≤ x2 ≤ 20, 1 ≤ x1 ≤ 5x2
x3 = 1, 21 ≤ x2 ≤ 100, 1 ≤ x1 ≤ 100

2 ≤ x3 ≤ 3, 2x33 + 7 ≤ x2 ≤ 100, 1 ≤ x1 ≤ 100
So, the number of possible outcomes will be as follows:

20X
x2=9

5x2X
x1=1

1 +
100X

x2=21

100X
x1=1

1 +
3X

x3=2

100X
x2=2x33+7

100X
x1=1

1 = 20670.
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Part II - An Application of Sigma Notation in
Evaluating the Number of Non-negative Integer

Solutions of an Indeterminate Equation.

Introduction
Consider the indeterminate equation in m variables:

mX
i=1

aixi = n; m,n ∈ N. (eq. 4)

For evaluating the number of solutions of eq. 4, there is a
lengthy and tiresome classical method which uses generating func-
tions. In this paper we discuss a method which is shorter than the
classical method and depends mainly on the properties of sigma
notation.

We begin our discussion by considering linear equations in the
special case in which ai|ai+1 for i = 1, 2, . . .m−1. Next, we consider
the case of non-linear equations. Finally, we consider a method for
approximating the number of non-negative integer solutions of eq.
4.

Preliminaries

We denote the set {0, 1, 2, . . .} by N∗, the set of natural num-
bers by N, and the Cartesian product

Q
mN by Nm. We de-

note the set of non-negative integer solutions of
Pm
i=1 aixi = n

by APm
i=1 aixi=n

, its cardinality by
¯̄
APm

i=1 aixi=n

¯̄
, and the integer

part of α by [α] .

Method for Linear Equations

We devote this section to finding the number of solutions of
linear equations in m variables in N∗

m

.

Lemma 1 Suppose that for i = 1, 2, 3, . . . ,m− 1, ai|ai+1 and that
am|n. If

S =

½
(x1, x2, . . . , xm) : 0 ≤ x1 ≤ n−

Pm
i=2 aixi
a1

,

0 ≤ x2 ≤ n−
Pm
i=3 aixi
a2

, . . . , 0 ≤ xm−1 ≤ n− amxm
am−1

,

0 ≤ xm ≤ n

am
; xi ∈ N∗ for i = 1, 2, . . .m

¾
.
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Then we have:

¯̄
APm

i=1 aixi≤n
¯̄
= |S| =

n
amX

xm=0

n−amxm
am−1X

xm−1=0

. . .

n−Pm
i=3 aixi
a2X

x2=0

n−Pm
i=2 aixi
a1X

x1=0

1.

Example 3 Calculate the number of nonnegative integer solutions
of 3x+ 12y + 60z ≤ 3000.

By Lemma 1we have:

|A3x+12y+60z≤3000| =
3000
60X
z=0

3000−60z
12X
y=0

3000−12y−60z
3X

x=0

1 = 2165426.

Now suppose the condition am|n does not hold. In this case,
slight changes in Lemma 1 lead us to the following proposition:

Proposition 1 Suppose that for i = 1, 2, 3, . . . ,m − 1, ai|ai+1.
Then

¯̄
APm

i=1 aixi≤n
¯̄
= |S| =

[ n
am
]X

xm=0

h
n

am−1

i
− amxm

am−1X
xm−1=0

. . .

. . .

h
n
a2

i
−
Pm
i=3 aixi
a2X

x2=0

h
n
a1

i
−
Pm
i=2 aixi
a1X

x1=0

1.

Remark: A special case of the previous proposition (m = 2) yields
a simple version of the formula. We give it here.

|Aa1x1+a2x2≤n| =
µ∙

n

a2

¸
+ 1

¶µ∙
n

a1

¸
+ 1− a2

2a1

∙
n

a2

¸¶
.

Editor’s Note: Lemma 1 and Proposition 1 are analogs of Propo-
sition 6.1 in [2], which deals with the non-negative integer solutions
of linear equations. The proofs of Lemma 1 and Proposition 1 fol-
low directly from the statement of Proposition 6.1 in [2] and the
arguments contained in Theorem 1.

We will now illustrate the previous proposition by a concrete
example.
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Example 4

|A3x+12y+60z≤2999| =
49X
z=0

249−5zX
y=0

999−20z−4yX
x=0

1 = 2159000.

Adding a Non-linear Twist:

By Proposition 1, we can evaluate the number of solutions ofPm−1
i=1 aixi + am (xm)

k = n, where k,m, n ∈ N, and such that
ai|ai+1.

To find non-negative integer solutions of
Pm−1
i=1 aixi+am (xm)

k

≤ n, given the same hypotheses, we proceed as in the linear case.
First we must determine the range of x1, x2, . . . , xm. GivenPm−1
i=1 aixi + am (xm)

k
= n, it follows that:

0 ≤ x1 ≤
∙
n

a1

¸
−
Pm−1
i=2 aixi + am (xm)

k

a1

0 ≤ x2 ≤
∙
n

a2

¸
−
Pm−1
i=3 aixi + am (xm)

k

a2

...

0 ≤ xm−1 ≤
∙
n

am−1

¸
− am (xm)

k

am−1

0 ≤ xm ≤
∙

k

r
n

am

¸
.

Consequently,

¯̄̄
APm−1

i=1 aixi+am(xm)
k≤n

¯̄̄
=

h
k
√

n
am

iX
xm=0

h
n

am−1

i
− am(xm)k

am−1X
xm−1=0

. . .

. . .

h
n
a2

i
−
Pm−1
i=3

aixi+am(xm)k

a2X
x2=0

h
n
a1

i
−
Pm−1
i=2

aixi+am(xm)k

a1X
x1=0

1.

Example 5 Find the number of solutions in N∗
3

of x+3y+9z4 ≤
254 and x+ 3y + 9z4 = 254.

Since our solutions are in N∗
3

, we deduce that:
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0 ≤ x ≤ 254− 3y − 9z4

0 ≤ y ≤ ¥ 2543 ¦− 3z4
0 ≤ z ≤

j
4

q
254
9

k ⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ x ≤ 254− 3y − 9z4

0 ≤ y ≤ 84− 3z4

0 ≤ z ≤ 2

⇒ ¯̄
Ax+3y+9z4≤254

¯̄
=

2X
z=0

84−3z4X
y=0

254−3y−9z4X
x=0

1 = 23283.

Similarly, we have:

¯̄
Ax+3y+9z4≤253

¯̄
=

2X
z=0

84−3z4X
y=0

253−3y−9z4X
x=0

1 = 23079.

Therefore, it follows that:¯̄
Ax+3y+9z4=254

¯̄
=

¯̄
Ax+3y+9z4≤254

¯̄− ¯̄Ax+3y+9z4≤253 ¯̄
= 23283− 23079 = 204.

Corollary 1 Suppose that k,m, n ∈ N∗. Then
¯̄̄
Ax1+x2+...+xm+a(xm+1)

k=n

¯̄̄
=

b k
√

n
x cX

x=0

µ
n− axk +m− 1

m− 1
¶
.

Our method can be modified for application to problems in
which there are constraints on the variables. We consider such an
example.

Example 6 Suppose that we want to determine the number of
solutions in N∗

3

of x+6y+12z3 ≤ 20177, subject to the following
constraints:

25 ≤ x ≤ 400, 17 ≤ y ≤ 60, 10 ≤ z ≤ 32.
Given that x+6y+12z3 ≤ 20177, we deduce that 10 ≤ z ≤ 11.

Neither this further constraint on z nor the constraints inherent in
the given inequality pose any further restrictions on the variables
x and y. So the number of solutions in N∗

3

, given the constraints,
is:

11X
z=10

60X
y=17

400X
x=25

1 = 33088
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Method of Approximating the Number of Solutions

The method employed in the previous section is more appro-
priate than the generating function method and is sufficient for our
needs. Nevertheless, in this section, we present some other methods
for finding the number of approximate solutions.

The area of the region bounded by the line a1x1 + a2x2 =

n; a1, a2, n > 0 and the coordinate axes is equal to

³
n
a1

´³
n
a2

´
2 .

Similarly the volume of the solid bounded by the plane a1x1 +
a2x2+a3x3 = n; a1, a2, a3, n > 0 and the coordinate planes is equal

to

³
n
a1

´³
n
a2

´³
n
a3

´
6 . Therefore, the approximate number of lattice

points in these regions (or equivalently, the approximate number of
non-negative integer solutions of a1x1+a2x2 ≤ n and a1x1+a2x2+
a3x3 ≤ n) is given by

³
n
a1
+1
´³

n
a2
+1
´

2 and

³
n
a1
+1
´³

n
a2
+1
´³

n
a3
+1
´

6
respectively.

By extending the two and three variable cases, the approximate
number of non-negative integer solutions of can be written as:

¯̄
APm

i=1 aixi≤n
¯̄ ≈ Qm

i=1

³
n
ai
+ 1
´

m!
, (eq. 5)

This approximation can be improved as follows:

¯̄
APm

i=1 aixi≤n
¯̄ ≈ Qm

i=1

³
n
ai
+ 1
´

m!

+

µ
1− 1

m!

¶⎛⎝Qm
i=1

³
n
ai
+ 1
´

m!
−
Qm
i=1

³
n−1
ai
+ 1
´

m!

⎞⎠ . (eq. 6)

Example 7 Consider the inequality 7x1+66x2 ≤ 10000. Then eq.
6 implies that

|A7x1+66x2≤10000| ≈ ( 100007 +1)( 1000066 +1)
2

+
¡
1
2

¢µ( 100007 +1)( 1000066 +1)−( 99997 +1)( 999966 +1)
2

¶
= 109026.51
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Let ∆ denote the difference between the exact number of solutions
of the inequality and the approximate number of solutions as given
above. Then

∆ = 109027− 109026.51 ≈ 0.49

By extending Lemma 1, the following expression satisfies every
indeterminate inequality.

¯̄
APm

i=1 aixi≤n
¯̄
=

[ n
am
]X

xm=0

h
n−amxm
am−1

iX
xm−1=0

. . .

h
n−Pm

i=3 aixi
a2

iX
x2=0

h
n−Pm

i=2 aixi
a1

iX
x1=0

1.

(eq. 8)

The number of solutions inN∗
m

of the corresponding indeterminate
equation can be computed using eq. 8 as follows:

¯̄
APm

i=1 aixi=n

¯̄
=

[ n
am
]X

xm=0

h
n−amxm
am−1

iX
xm−1=0

. . .

h
n−Pm

i=3 aixi
a2

iX
x2=0

h
n−Pm

i=2 aixi
a1

iX
x1=0

1

−
[n−1am

]X
xm=0

h
n−1−amxm

am−1

iX
xm−1=0

. . .

h
n−1−Pm

i=3 aixi
a2

iX
x2=0

h
n−1−Pm

i=2 aixi
a1

iX
x1=0

1

≈
Z n

am

− 1
2

Z n−amxm
am−1

− 1
2

. . .

Z n−Pm
i=3 aixi
a2

− 1
2

Z n−Pm
i=2 aixi
a1

− 1
2

dx1dx2 . . . dxm

−
Z n−1

am

− 1
2

Z n−1−amxm
am−1

− 1
2

. . .

Z n−1−Pm
i=3 aixi
a2

− 1
2

Z n−1−Pm
i=2 aixi
a1

− 1
2

dx1dx2 . . . dxm.

Clearly, evaluating the iterated integrals in the above expres-
sion is simpler than computing the corresponding sums. However,
as the number of integrals increases, computation of the iterated
integrals will also be difficult. Therefore, we try to find a simple
closed form. First, consider the two variable case.

|Aa1x1+a2x2≤n| ≈
R n

a2

− 1
2

R n−a2x2
a1

− 1
2

dx1dx2

= n
2a1a2

(n+ (a1 + a2)) +
³
a2
8a1

+ 1
4

´
. (eq. 9)



12 Alabama Journal of Mathematics

Let G (n) denote the value of eq. 9 as a function of n. To
determine the number of solutions of a1x1 + a2x2 = n, we should
compute the difference G (n)−G (n− 1) . For this purpose, we can
ignore the constant

³
a2
8a1

+ 1
4

´
. In other words, we have:

|Aa1x1+a2x2=n| ≈ G (n)−G (n− 1) : G (n)=
n

2a1a2
(n+ (a1 + a2)) .

In general, we get the following formula:¯̄
APm

i=1 aixi=n

¯̄ ≈ G (n)−G (n− 1) ;
where G (n) =

³
n+

Pm
i=3 ai
2

´m−1
m!

Qm
i=1 ai

³³
n+

Pm
i=3 ai
2

´
+ m

2 (a1 + a2)
´
.

(eq. 10)

Eq. 10 can be proved by induction.

Example 8 We conclude by presenting tables comparing the ap-
proximate number of solutions of indeterminate inequalities to the
exact number of solutions, which we have obtained via a computer
program. The examples given show that the accuracy of eq. 10 de-
creases as n and the number of variables increase. However, when
the coefficients of variables, n, and n−1 are pair-wise coprime, the
aforementioned method is more accurate.Pm

i=1 aixi ≤ n eq. 10
¯̄
APm

i=1 aixi≤n
¯̄

6x1 + 18x2 ≤ 100 58.02 57
6x1 + 18x2 ≤ 103 61.17 63
6x1 + 17x2 ≤ 100 60.88 61
6x1 + 17x2 ≤ 103 64.21 65
6x1 + 18x2 ≤ 1006 4797.75 4788
6x1 + 18x2 ≤ 1009 4826.13 4845
6x1 + 17x2 ≤ 1001 5025.25 5030
6x1 + 17x2 ≤ 1004 5055 5060

6x1 + 18x2 + 36x3 ≤ 1042 52807 52635
6x1 + 18x2 + 36x3 ≤ 1045 53251 53535
6x1 + 19x2 + 36x3 ≤ 1042 50097 50148
6x1 + 19x2 + 36x3 ≤ 1045 50520 50579
6x1 + 19x2 + 37x3 ≤ 1071 52878 52931
6x1 + 19x2 + 37x3 ≤ 1074 53311 53365

6x1+19x2+35x3+43x4≤ 1700 2166912 2168130
6x1+19x2+37x3+43x4+49x5≤ 1700 16613380 16611400
6x1+19x2+37x3+43x4+49x5≤ 1666 15084030 15081360
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i=1 aixi ≤ n ∆ δ = ∆¯̄̄

APm
i=1

aixi≤n
¯̄̄

6x1 + 18x2 ≤ 100 1.02 0.018
6x1 + 18x2 ≤ 103 1.83 0.029
6x1 + 17x2 ≤ 100 0.12 0.002
6x1 + 17x2 ≤ 103 0.79 0.012
6x1 + 18x2 ≤ 1006 9.75 0.002
6x1 + 18x2 ≤ 1009 18.87 0.004
6x1 + 17x2 ≤ 1001 4.75 0.001
6x1 + 17x2 ≤ 1004 5 0.001

6x1 + 18x2 + 36x3 ≤ 1042 172 0.003
6x1 + 18x2 + 36x3 ≤ 1045 284 0.005
6x1 + 19x2 + 36x3 ≤ 1042 51 0.001
6x1 + 19x2 + 36x3 ≤ 1045 59 0.001
6x1 + 19x2 + 37x3 ≤ 1071 53 0.001
6x1 + 19x2 + 37x3 ≤ 1074 54 0.001

6x1+19x2+35x3+43x4≤ 1700 1218 0.001
6x1+19x2+37x3+43x4+49x5≤ 1700 1980 0.000
6x1+19x2+37x3+43x4+49x5≤ 1666 2670 0.000
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