Annuli Containing All the Zeros of a Polynomial

PRASANNA KUMAR, Anil Kumar

Abstract


In this paper, we provide three results concerning the annular regions containing the zeros of a complex
polynomial. These results show certain improvements in comparison to some of the earlier results. One
specic example of a polynomial for each of new results provided in this paper, has been generated using
MATLAB to substantiate the improvement in our results over the existing results. A comparative analysis
on the computational results is also done towards the end. Such kind of results on the location of zeros of a
polynomial have wide applications in many areas, such as Signal Processing, Communication Theory etc.

Full Text:

PDF

References


Aberth, O. (1973). Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp., 27, 339-344.

Affane-Aji, C., Agarwal, N. & Govil, N. K. (2009). Location of zeros of polynomials, Math. Comp. Model., 50, 306-313.

Affane-Aji, C., Biaz, Saad & Govil, N. K. (2010). On annuli containing all the zeros of a polynomial, Math. Comp. Model., 52, 1532-1537.

Bidkham, M., Zireh, A. & Soleiman Mezerji H. A. (2013). Bound for the zeros of polynomials, J. Class. Anal., 3, 149-155.

Bidkham, M., Zireh, A. & Soleiman Mezerji H. A. (2017). Bound for the Zeros of Polynomials, South. East Asian Bull. Math., 41, 1-8.

Bona, M. (2016). Introduction to Enumerative and Analytic Combinatorics, CRC Press.

Cauchy, A. L. (1829). Exercices de mathematiques, IV Annee de Bure Freres, Paris.

Conway, J. H. & Guy, R. K. (1996). The Book of Numbers, Copernicus Series. Springer, 91-94.

Dalal, A. & Govil, N. K. (2013). On region containing all the zeros of a polynomial, Appl. Math. Comp., 219, 9609-9614.

Dalal, A. & Govil, N. K. (2014). Annulus containing all the zeros of a polynomial, Appl. Math. Comp., 249, 429-435.

Datt, B. & Govil, N. K. (1978). On the location of zeros of a polynomial, J. Approx. Th., 24, 78-82.

Diaz-Barrero, J. L. (2002). Note on bounds of the zeros, Missouri J. Math. Sci., 14, 88-91.

Diaz-Barrero, J. L.1 (2002). An annulus for the zeros of polynomials, J. Math. Anal. Appl., 273, 349-352.

Diaz-Barrero, J. L. & Egozcue, J. J. (2004), Bounds for the moduli of zeros, App. Math. Lett., 17, 993-996.

Ehrlich, L. W. (1967). A modified Newton method for

polynomials, Comm. ACM, 10, 107-108.

Eze, R. N. (2016). Annular regions containing all the

zeros of a polynomial via special numbers, Appl.

Math. Inf. Sci., 10(6), 1999-2006.

Govil, N. K. & Kumar, P. (2015). On the annular

regions containing all the zeros of a polynomial,

Appl. Math. E-Notes, 15, 317-326.

Jain, V. K. (2006). On Cauchy's bound for zeros of a

polynomial, Turk. J. Math., 30, 95-100.

Joyal, A., Labelle, G. & Q. I. Rahman, Q. T. (1967).

On the location of zeros of polynomials, Can.

Math. Bull., 10, 53-63.

Kim, S. H. (2005). On the moduli of zeros of a polynomial, Amer. Math. Mon., 112, 924-925.

Milovanovic, G. V., Mitrinovic, D. S. & Rassias, Th. M.

(1994). Topics in Polynomials: Extremal Problems, Inequalities and Zeros, World Scientific, Singapore.

Milovanovic, G. V. & Petkovic, M. S. (1986). On com-

putational efficiency of the iterative methods for

the simultaneous approximation of polynomial zeros, ACM Trans. Math. Software, 12, 295-306.

Nourein, A. W. M. (1977). An improvement on two it-

eration methods for simultaneously determination

of the zeros of a polynomial, Internat. J. Comput.

Math, 6, 241-252.

Petkovic, Miodrag S. (2008). A highly efficient root-

solver of very fast convergence, Applied Mathematics and Computation, 205, 298-302.

Rather, N. A. & Matto, S. G. (2013). On annulus containing all the zeros of a polynomial, Appl. Math.

E-Notes, 13, 155-159.

Sun, Y. J. & Hseih, J. G. (1996). A note on circular

bound of polynomial zeros, IEEE Trans. Circuits

Syst. I, 43, 476-478.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Alabama Journal of Mathematics