Units in Quadratic and Multi-Quadratic Fields

Adam Pratt, Maria Stadnik, Mary-Stewart Wachter


In this paper, we investigate multi-quadratic fields, looking for those that contain units of norm \(-1\). We provide results concerning the existence of units of norm \(-1\) in fields of the form \(\mathbb{Q}(\sqrt{2p})\) for prime \(p \equiv 1 \mod 4\) and prove that all of the fields \(\mathbb{Q}(\sqrt{2},\sqrt{p})\) with \(p \equiv 5 \mod 8\) prime contain a unit of norm \(-1\).

Full Text:



E. Artin. The collected papers of Emil Artin. Edited by Serge Lang and John T. Tate. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1965.

A. Frohlich and M. J. Taylor. Algebraic number theory. Cambridge studies in advanced mathematics. Cambridge University Press, 1991.

R. Gupta and M. Murty. A remark on Artin's conjecture. Invent. Math., 1(78):127-130, 1984.

C. Hooley. On Artin's conjecture. J. Reine Angew. Math., 225:209-220, 1967.

K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics. Springer, second edition, 1990.

T. Kubota. Uber den bizyklischen biquadratischen zahlkorper. Nagoya Math. J., 10:65-85, 1956.

R. Kucera. On the parity of the class number of a biquadratic field. J. Number Theory, 52(1):43-52, 1995.

S. Kuroda. Uber die klassenzahlen algebraischer zahlkorper. Nagoya Math. J., 1:1-10, 1950.

R. A. Mollin and A. Srinivasan. A note on the negative Pell equation. Int. J. Algebra, 4(17-20):919-922, 2010.

H. Roskam. A quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory, 81(1):93-109, 2000.

M. E. Stadnik. A multiquadratic field generalization of Artin's conjecture. J. Number Theory, 170(1):75-102, 2017.

H. Wada. On the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo Sect. I, 13:201-209, 1966.


  • There are currently no refbacks.

Copyright (c) 2017 Alabama Journal of Mathematics